Models of Human Balance Control
About
Studying human balance control strategies can give valuable insight for controlling robotic postural systems, or for developing balance-training tools in the rehabilitation realm.
Hugh Herr
Alumnus Contributor: Andreas Hofman
Publications
A. Hofmann, M. Popovic, and H. M. Herr.
Exploiting angular momentum to enhance bipedal center-of-mass control,
IEEE ICRA, 2009.
M. Vukobratovic, et al.
Biological Principles of Control Selection for a Humanoid Robot’s Dynamic Balance Preservation,
Intl. J. Humanoid Robotics, 2008.
M. Popovic, A. Hofmann, and H. Herr.
Angular momentum regulation during human walking: biomechanics and control,
IEEE ICRA, 2004.
M. Popovic, A. Hofmann, and H. Herr.
Zero spin angular momentum control: definition and applicability,
Intl. Conf. Humanoid Robots, 2004.
A. Hofmann, S. Massaquoi, M. Popovic, and H. Herr.
A sliding controller for bipedal balancing using integrated movement of contact and non-contact limbs,
IEEE IROS, 2004.
A. Hofmann, M. Popovic, and H. Herr.
Humanoid standing control: learning from human demonstration,
J. Automatic Control, 2002.
A. Hofmann, M. Popovic, and H. M. Herr.
Exploiting angular momentum to enhance bipedal center-of-mass control,
IEEE ICRA, 2009.
M. Vukobratovic, et al.
Biological Principles of Control Selection for a Humanoid Robot’s Dynamic Balance Preservation,
Intl. J. Humanoid Robotics, 2008.
M. Popovic, A. Hofmann, and H. Herr.
Angular momentum regulation during human walking: biomechanics and control,
IEEE ICRA, 2004.
M. Popovic, A. Hofmann, and H. Herr.
Zero spin angular momentum control: definition and applicability,
Intl. Conf. Humanoid Robots, 2004.
A. Hofmann, S. Massaquoi, M. Popovic, and H. Herr.
A sliding controller for bipedal balancing using integrated movement of contact and non-contact limbs,
IEEE IROS, 2004.
A. Hofmann, M. Popovic, and H. Herr.
Humanoid standing control: learning from human demonstration,
J. Automatic Control, 2002.