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Abstract

A two-dimensional numerical model of a horse is presented that pre-
dicts the locomotory behaviors of galloping horses, including how
stride frequency, stride length, and metabolic rate change from a
slow canter to a fast gallop. In galloping, each limb strikes the
ground sequentially, one after the other, with distinct time lags sep-
arating hind and forelimb footfalls. In the model, each stance limb
is represented as an ideal linear spring, and both feed-forward and
feedback control strategies determine when each limb should strike
the ground. In a feed-forward strategy, the first hindlimb and the
first forelimb to strike the ground are phase-locked such that the
time separating their adjacent footfalls is held constant by the con-
troller. In distinction, in a feedback strategy, the footfalls of the sec-
ond hindlimb and the second forelimb begin when the first hindlimb
and the first forelimb are perpendicular to the model’s trunk, respec-
tively. While any limb is in contact with the ground, the controller
also employs a feedback control to move each stance foot at a con-
stant tangential velocity relative to the model’s trunk. With these
control schemes, the galloping model remains balanced without sen-
sory knowledge of its postural orientation relative to vertical. This
work suggests that a robot will exhibit behavior that is mechanically
similar to that of a galloping horse if it employs spring-like limbs
and simple feed-forward and feedback control strategies for which
postural stabilization is an emergent property of the system.

KEY WORDS—horse, galloping, control, stability, legged
locomotion

The International Journal of Robotics Research
Vol. 20, No. 1, January 2001, pp. 26-37,
©2001 Sage Publications, Inc.

1. Introduction

The scientific investigation into quadrupedal galloping first
began in 1899 when Eadweard Muybridge presented his
stop-motion photographs of galloping cats, dogs, camels,
and horses (Muybridge 1899). Although Muybridge’s pho-
tographs generated a great deal of interest for locomotion stud-
ies among scientists and inventors, galloping did not receive
a mathematical treatment until nearly a century after the pho-
tographs were first published.

To explain why galloping is a faster quadrupedal gait than
trotting, McMahon (1985) developed a simple mathematical
model in which the legs of a quadruped were represented by
a single massless spring and the body as a point mass. The
model predicted that galloping should be 2.8 times faster than
trotting. Later studies showed that this value is in reason-
able agreement with experimental data1 (Heglund and Taylor
1988), suggesting that a resonant spring-mass model can de-
scribe some galloping behaviors.

After McMahon’s (1985) work, Nanua (1992) developed a
two-dimensional galloping model using four massless spring-
damper limbs connected to a rectangular rigid body. Un-
like the passive spring-mass model of McMahon, Nanua’s
quadrupedal limbs were actuated and could actively shorten
and lengthen as well as retract and protract.2 To stabilize

1. On average, the lowest galloping speed was determined to be 2.6 times
faster than the lowest trotting speed for 16 species of wild and domestic
quadrupeds ranging in size from 30 gram mice to 200 Kg horses (Heglund
and Taylor 1988).
2. Throughout this paper,limb retraction is defined as a backward displace-
ment of the foot toward the quadruped’s rump, by means of rotating a limb
about the hip or shoulder joint within the sagittal plane. In contrast,limb
protraction is defined as a forward displacement of the foot toward the
quadruped’s head (Gray 1968).
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galloping in numerical simulation, he used two feedback con-
trol strategies to adjust actuator forces. In a first strategy, the
total mechanical energy of the model was computed each time
the model left the ground, and each leg was either shortened
or extended throughout the next ground contact period to keep
the model’s total energy from diverging. In a second strategy,
the angular position of each model limb at first ground contact
was adjusted to control forward galloping speed. Although
Nanua’s controller did not directly stabilize model posture
throughout a galloping step, his controller did require sen-
sory information of the model’s orientation with respect to
vertical. Without absolute trunk position and velocity, the
model’s total mechanical energy could not be computed and
therefore, he reasoned, could not be controlled.

Ringrose (1997) challenged the feedback control paradigm
as a means of stabilizing galloping. He argued that the postu-
ral stability of a galloping machine should be inherent to its
structure, not to a feedback control strategy. To support this
idea, he developed a model that galloped in numerical sim-
ulation with only a feed-forward control commanding each
model actuator. The model was stable without relying on
sensory information of its postural orientation relative to ver-
tical. In fact, his model could gallop without any sensory
information from its environment, but its stability was depen-
dent on the shape of each supporting limb. Ringrose used
a curved foot roughly the shape of a hemisphere. When he
made the foot too flat or too small, the galloping model fell
over.

The mathematical models described thus far were not
formulated specifically to capture the dominant mechanical
behaviors of galloping animals. The models of McMahon
(1985) and Nanua (1992) did not include limbs with mass or
a flexible neck and back, structural features believed to be crit-
ical for realistic galloping dynamics (Alexander 1985). The
model of Ringrose (1997) included large hemispherical feet
not found in animals. Many mammals run on their toes, not
relying on a foot platform to maintain their balance (Biewener
1989; Roberts et al. 1997). The purpose of this work is to be-
gin to understand what control mechanisms quadrupeds might
use to maintain their speed, height, and postural orientation
while galloping. Do galloping animals continually measure
their postural orientation relative to vertical and use this infor-
mation in feedback control strategies to remain stable, or do
they employ self-stabilizing feed-forward strategies to gallop
steadily without relying on sensory information from their
environment? We hypothesize that a robot will exhibit me-
chanical behavior that is similar to that of a galloping horse
without the robot’s postural orientation needing to be explic-
itly controlled or measured, not because of foot shape but
because of simple feed-forward and feedback control strate-
gies for which postural stabilization is an emergent property.
To test the hypothesis, a horse model is constructed using
body segment lengths and mass distributions measured from
a horse. Control strategies are then formulated using horse-

limb kinematic, stiffness, and morphological data. Quanti-
tative predictions made by the model are then compared to
mechanical and energetic data from galloping horses.

2. Methods

2.1. Horse Model Structure

The first research objective was to develop a horse model that
was detailed enough in structure to capture the significant
mechanical characteristics of galloping. To model galloping,
four legs are required to show the footfall patterns of stance.
Each leg must retract and protract in the sagittal plane about
a shoulder or hip joint and change length about an elbow or
knee joint. Furthermore, the model’s neck and back should
not be rigid. In slow-motion films of galloping horses, neck
and back flexion can easily be observed with the eye. It is
reasonable to ask whether these flexibilities are important to
the overall mechanical behavior of a galloping horse.

The horse model is described in Figure 1. In a previous in-
vestigation by Herr and McMahon (2000), a model of equiva-
lent structure was developed to study the mechanics and ener-
getics of quadrupedal trotting. Although the structural details
of this model are equivalent to the galloping model presented
here, the control strategies are nonetheless distinct. As is de-
scribed in Section 2.2, the footfall patterns of galloping differ
from those of trotting, requiring that the control strategies
of a trotting model be distinct from those necessary for the
stabilization of a galloping model.

2.2. Justification of the Control Methods

2.2.1. Footfall Patterns in Galloping

Researchers refer to galloping as an in-phase gait because the
same footfall pattern is repeated throughout every ground con-
tact period in steady-state running, as opposed to trotting, an
alternate gait, in which diagonal limb pairs alternately strike
the ground from one contact period to the next. In galloping,
the limbs strike the ground in a sequential manner. For the
transverse gallop,3 the preferred gait of horses, the ground
contact phase begins when a first hindlimb strikes the ground,
and then following this foot strike, a second hindlimb makes
contact before or at the same time as a diagonal forelimb. And
finally, after the impact of the diagonal forelimb, the second
and final forelimb makes contact.

Although this basic sequence of footfalls does not change
with galloping speed, the amount of time separating the foot
strikes of the second hindlimb and the first diagonal forelimb
increases with increasing speed (Muybridge 1899). At the
slowest galloping speed, a canter gait is used in which the

3. Some animals use a rotary gallop when the sequence of footfalls goes
around in a circle. Here, the first forefoot to strike the ground is on the
same side of the animal as the second hindfoot. The transverse gallop is the
preferred gait of horses and is therefore the gait modeled for this investigation.
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Fig. 1. The model is sketched with leg, neck, and back joints
noted. There are a total of 10 degrees of freedom, 2 per leg as
well as a back joint and a neck joint. All joints are rotary, ex-
cept for prismatic knee and elbow joints. Three separate rigid
shapes are used for the rump, body, and neck/head, and each
leg is constructed with an upper rigid segment and a lower
rigid segment. Mass is distributed throughout the model in
a realistic manner using horse morphological data. At the
distal end of each leg is a single ground contact point. The
viscoelastic property of a natural running surface is modeled
using springs and dampers aligned in vertical and horizontal
directions. A compliant ground was required so that each
model foot would not slip at first ground contact. The verti-
cally aligned ground springs allowed each foot to penetrate
the running surface, enabling the horizontal ground springs to
hold the foot in place. Ground stiffness was adjusted so that
the limbs only penetrated the ground by a small amount when
running (∼0.3 cm). Damping was then adjusted to minimize
oscillations between the ground and foot. For a detailed de-
scription of model structure, see Herr and McMahon (2000).

second hindlimb and the first diagonal forelimb contact the
ground at nearly the same moment. However, at faster speeds,
a time delay develops between these adjacent foot strikes.
This basic trend continues until, at the maximum galloping
speed, an aerial phase exists between hindlimb and forelimb
ground contact phases.

2.2.2. Early Limb Retraction

In galloping, a limb can begin to retract even before striking
the ground. This behavior is shown in Figure 2, in which
the angle of the first hindlimb that will contact the ground is
plotted against percent aerial time for a galloping horse (600
Kg). At approximately 80% aerial time, the hindlimb begins
to retract toward the ground. This same behavior, retraction
before striking the ground, can also be observed in the other
quadrupedal limbs. Figures 3, 4, and 5 show early limb re-
traction in the second hindlimb, first forelimb, and second
forelimb to strike the ground in a galloping sequence, respec-
tively. Does the mechanical state of the animal trigger the

Fig. 2. The hindlimb angle of an actual galloping horse
is plotted against percent aerial time. At 0% aerial time,
the horse first loses contact with the ground, and at 100%,
ground contact is reestablished. Video images taken at 200
frames/second were entered into the computer and then
digitized for limb angle measured with respect to vertical.
At approximately 80% aerial time, the first hindlimb begins
to retract toward the ground. Errors are standard deviations
of the mean for five consecutive gait cycles taken from one
animal galloping at a steady velocity.

retracting limb movement, or is the movement triggered by a
clock or central pattern generator?

In Figure 3, the second hindlimb begins to retract ap-
proximately when the first hindlimb is vertically aligned or
when the limb is approximately perpendicular with the horse’s
trunk. Retraction of the second forelimb, shown in Figure 5,
seems to be triggered in the same manner. When the first
forelimb of the horse is vertical (limb angle∼0.0), or when
the limb is approximately perpendicular with the animal’s
trunk, the second forelimb begins to retract toward the ground.
Hence, on the basis of these data, one hypothesis of the gal-
loping controller is that when the first contact limb of a hind-
or forelimb pair is perpendicular with the trunk, retraction is
triggered in the second limb.4

4. Alternately, a different method could be employed to trigger retraction
in the second hind- or forelimb. When the first contact limb of a hind or
forelimb pair first begins to lengthen from a maximally compressed state,
retraction could be triggered in the second limb.
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Fig. 3. Both hindlimb angles are plotted against percent time
between the first and second hindlimb foot strikes. At zero
percent, the first hindlimb first strikes the ground, and at
100%, the second hindlimb strikes the ground. At approx-
imately 60%, the second hindlimb begins to retract toward
the ground when the first hindlimb is approximately perpen-
dicular with the horse’s trunk (limb angle∼0.0).

Limb retraction in the first hindlimb and in the first fore-
limb does not seem to be triggered by the mechanical state
of the animal. As mentioned previously, in the canter gait
used at the slowest galloping speeds, the first diagonal fore-
limb strikes the ground close to the same time as the second
hindlimb (Muybridge 1899). For this to occur, retraction of
these limbs must nearly coincide. However, at fast galloping
speeds, the first diagonal forelimb strikes the ground only after
the second hindlimb has left the ground, requiring that the sec-
ond hindlimb has started its retraction toward the ground long
before the first diagonal forelimb even begins to retract (Muy-
bridge 1899). Hence, the mechanical state of the hindlimbs
at the point when the first diagonal forelimb begins to retract
changes dramatically with galloping speed.

What could trigger the retraction of both the first hindlimb
(Figure 2) and the first forelimb (Figure 4) that would work
equally well at all galloping speeds? A critical hypothesis in
the galloping controller is that these limbs are phase-locked.
This requires that the amount of time separating the initiation
of retraction in the first hindlimb and the initiation of retraction
in the first forelimb is held constant by a galloping horse.
In turn, the time separating the initiation of retraction in the
first forelimb (during a previous ground contact phase) and
the initiation of retraction in the first hindlimb is also held
constant. This hypothesis requires a cycle time that changes

Fig. 4. The first hindlimb angle and the first forelimb angle are
plotted against percent time between the first hindlimb foot
strike and the first forelimb foot strike. At approximately
70%, the first forelimb begins to retract toward the ground.

little with speed. This is, in fact, what has been observed.
In galloping animals, stride frequency typically changes by
less than 10%, even though speed doubles over the galloping
range (Heglund and Taylor 1988). Quadrupeds increase speed
in galloping not by decreasing cycle time but by increasing
the distance traveled during a cycle.

2.2.3. Elastic Structures in the Model

Throughout ground contact in galloping, each stance limb
goes through a period of shortening or compression followed
by a period of lengthening. Experimental evidence suggests
that the vertebrate limb behaves like a spring during this pe-
riod. Cavagna, Heglund, and Taylor (1977) discovered that
during ground contact in running, fluctuations in forward ki-
netic energy of the center of mass are in phase with changes
in gravitational potential energy. They hypothesized that
quadrupeds most likely store elastic strain energy in tendon,
ligament, and perhaps even bone to reduce fluctuations in total
mechanical energy during each running step.

To represent these elastic structures in the galloping model,
ideal linear springs were used to simulate limb, back, and neck
behavior in stance. To model whole-limb compliance, springs
were placed at knee and elbow prismatic joints (Fig. 1) so that
each stance limb would go through a period of compression
followed by a period of extension in a manner similar to a
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Fig. 5. Both forelimb angles are plotted against percent
time between the first and second forelimb foot strikes. At
approximately 70%, the second forelimb begins to retract
toward the ground when the first forelimb is approximately
perpendicular with the horse’s trunk (limb angle∼ 0.0).

vertebrate limb. Leg springs were also used in the gallop-
ing models of McMahon (1985) and Nanua (1992) and the
trotting models of McMahon and Cheng (1990) and Herr and
McMahon (2000).

2.2.4. Hip Thrusting and Shoulder Braking

Of course, if all quadrupedal joints behaved as passive springs
throughout stance, galloping could not be sustained, simply
on the basis of energy conservation. Inspection of a horse’s
musculature supports the hypothesis that hip and shoulder
work may be important to the maintenance of forward mo-
mentum in galloping. The preponderance of muscle mass in
the hindlimb is positioned about the hip joint, acting to retract
the hindlimb and to power a running step (Gray 1968). In
distinction, a large fraction of forelimb muscle mass is posi-
tioned to protract the forelimb and to retard a running step. A
critical hypothesis in the galloping controller advanced here
is that even in constant-speed running, hip torques act as the
engine of quadrupedal galloping and shoulder torques as the
brake. This hypothesis is also central to the trotting horse
model of Herr and McMahon (2000).

2.3. Formulation of the Control Methods

The model is two-dimensional and therefore moves only
within the sagittal plane. During the aerial phase, the con-
troller moves the hips, shoulders, back, and neck to desired
angular positions relative to the model’s trunk. In addition, the
first hindlimb is lengthened to full leg extension for landing,
and the remaining limbs are shortened for foot clearance.

Just prior to ground contact, a model limb retracts toward
the ground. Depending on which limb is active, retraction be-
gins at a particular time or at a particular limb configuration.
After a fixed time interval from the initiation of retraction in
the first forelimb during a previous contact period, a hip torque
retracts the first hindlimb toward the ground. Retraction of
the second hindlimb begins when the first hindlimb is perpen-
dicular with the model’s trunk. In addition, after a fixed time
interval from the initiation of retraction in the first hindlimb,
a shoulder torque retracts the first forelimb. And finally, re-
traction in the second forelimb begins when, once again, the
first forelimb is perpendicular with the model’s trunk.

All stance limbs behave as linear springs, and the tangen-
tial velocity component of each foot, measured relative to
each foot’s proximal hip or shoulder joint, is controlled until
the limb no longer contacts the ground. While at least one
hindlimb is on the ground, a linear spring acts at the model’s
back. Likewise, while at least one forelimb is on the ground,
a linear spring acts at the neck.

During the aerial phase, conventional proportional-
derivative (PD) servos are employed to position the hips,
shoulders, back, and neck to desired angular positions relative
to the model’s trunk. PD servos are also used to lengthen the
limbs for landing and to shorten the limbs for foot clearance.

To control forward running speed, torques are applied
about the hip and shoulder such that the tangential veloc-
ity component of each foot, measured relative to each foot’s
proximal hip or shoulder joint, is sustained. Foot velocity is
computed by multiplying the leg length,l, by the angular ve-
locity of the proximal hip or shoulder joint measured relative
to the trunk,θ̇ , or

Vtang = lθ̇ . (1)

The applied torque is then proportional to the difference be-
tween a measured tangential velocity component and a target
velocity, or

Torque = −Gv(Vtang − Vtarget). (2)

The proportionality constant,Gv, is a velocity gain defining
the torque response to a given velocity error. In Figure 6, the
control strategies are explained in more detail using model
images in a galloping sequence.
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Fig. 6. The horse model is sketched in a galloping sequence.
In the model images, curved arrows about the hip and shoul-
der joints denote directions of torque application, and straight
arrows denote limb movement. During the aerial phase (a),
the controller positions each limb at a protracted angle relative
to the trunk. The back and neck are also positioned relative to
the trunk with the back flexed in a forward position. The leg
length of the first hindlimb is lengthened to full extension for
landing, and the remaining limbs are shortened for foot clear-
ance. (b) A hip torque retracts the first hindlimb foot such
that its tangential velocity component, measured relative to
the hip, is sustained. The limb retraction begins after a fixed
time interval from the initiation of retraction in the first fore-
limb during the previous contact period. This velocity con-
trol continues throughout ground contact in (c) as the second
hindlimb and the first forelimb lengthen for landing. When
the first hindlimb is perpendicular with the model’s trunk (d),
the second hindlimb begins to retract and is stiffened in prepa-
ration for landing. (e) The first forelimb stiffens and begins to
retract after a fixed time interval from the initiation of retrac-
tion in the first hindlimb. (f) The second forelimb continues
to lengthen while the contact limbs retract against the ground.
(g) The compressed first forelimb is perpendicular with the
trunk, triggering retraction of the second forelimb toward the
ground. At this time, the second forelimb also stiffens before
striking the ground (h). When the hindlimbs or the first fore-
limb loses contact with the ground (i), the limbs are shortened
for foot clearance and moved to protracted positions relative
to the body. All the limbs behave as linear springs throughout
ground contact, and the tangential velocity component of each
foot, measured relative to each foot’s proximal hip or shoul-
der joint, is controlled until the model leaves the ground. If
the target hindlimb velocity (Vtarget in eq. (2)) is greater than
the forward model velocity, and the target forelimb velocity is
less than the forward velocity, thrusting torques are generally
applied at the hips and braking torques at the shoulders, even
for constant speed galloping.

2.4. Simulation Experiments

2.4.1. Numerical Methods

Physically realistic computer simulations were used to study
the forces and motions of galloping. The simulations obeyed
the laws of Newtonian physics as applied to trees of rigid
bodies coupled together by joints. A commercially avail-
able modeling package called SD-Fast (Rosenthal and Sher-
man 1986) produced the simulation dynamics by generating
the equations of motion and then solving them numerically
using a fourth-order Runge-Kutta integration method. The
equations were integrated forward at a fixed time step of 0.4
ms, while another program called Creature Library (Ringrose
1992) communicated with the controller and SD-Fast to de-
termine the forces and torques commanded to the model’s
joints.

2.4.2. Velocity Range for Galloping Simulations

Analysis was not performed to determine whether galloping
was the better gait, by any criterion, at a particular running
speed. Rather, published observations of animal velocities
were used to define the full range of galloping (Heglund and
Taylor 1988). Several galloping velocities were examined,
ranging from a slow canter at 5.0 meters/second to a fast gallop
at 7.8 meters/second.

2.4.3. Setting Parameter Values

Knee, elbow, back, and neck stiffnesses used during stance in
the trotting horse model of Herr and McMahon (2000) were
also used for the galloping simulations of this paper, suggest-
ing that joint stiffness may not change appreciably when a
horse transitions from a trot to a gallop. Stable galloping5

was found at each speed using rotary back and neck stiff-
nesses equal to 1.7 kN-meter/rad and 1 kN-meter/rad, respec-
tively. Stance leg stiffnesses were selected from the range 7
kN/meter to 15 kN/meter for the knee joint and 15 kN/meter
to 30 kN/meter for the elbow joint. These stiffness ranges
were selected because when used in the Herr and McMahon
(2000) trotting model, predictions were made of the total leg
stiffness region,kleg = 22 kN/meter to 40 kN/meter, where
trotting horses of similar body size have been observed to op-
erate (Farley, Glasheen, and McMahon 1993). Here, total leg
stiffness,kleg, defined by McMahon and Cheng (1990), is the
peak vertical ground reaction forceFmax acting at mid-stance
during a trot when the leg springs are maximally compressed
a distance�l, or

kleg = Fmax

�l
. (3)

5. The model was considered to be in a stable limit cycle if galloping continued
for 20 running cycles without a significant change to maximum aerial height,
pitch, and forward velocity (least squares regression,p < .05).
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Unlike joint stiffness parameters, aerial PD servo position
and velocity gains were not constant across the trot-gallop
transition speed. However, the aerial gains, once defined at
the lowest galloping speed, were not adjusted across the entire
span of galloping from 5.0 to 7.8 meters/second. The gains
were defined using the same methodology employed in the
trotting horse model of Herr and McMahon (2000); values
were adjusted until the time required to position each joint
was equal to the aerial phase time, and each limb moved to
its target position with zero overshoot.

Similar to the aerial gains, the hind- and forelimb gains (Gv

in eq. (2)) required to sustain the tangential velocities of hind-
and forelimb stance feet and the two time durations separating
limb retractions in the first hind- and forelimbs, once defined
at the lowest galloping speed, were not adjusted across the
entire span of galloping. The only parameters that required
adjustment were the four aerial hind- and forelimb target an-
gles and the two hind- and forelimb target velocities (Vtarget

in eq. (2)). For each galloping speed and set of joint stiff-
nesses, genetic algorithms were employed to systematically
search the parameter space within specified numerical ranges
for the target limb angles and the target velocities (Vtarget ).
Those target angles and velocities that produced stable gallop-
ing were selected, and the resulting simulation was compared
to biological data (see Section 3).

2.4.4. Disturbance Testing

Numerical experiments were conducted at each galloping
speed to evaluate model stability. Such an experiment did not,
in any way, serve as a proof of stability but merely suggested
model robustness to a particular external disturbance. In the
experiment, ground impedance was reduced but only after the
model had been galloping on a stiff running surface and in a
stable limit cycle. Once reduced, ground stiffness was not
changed for the remaining time of simulation. With a small
change to ground impedance, the model quickly recovered
from the disturbance. However, when ground impedance was
decreased beyond a critical level, the model could no longer
remain upright on the soft surface. In each experiment, the
model was considered successful in overcoming a change in
ground impedance if the model found a new stable limit cy-
cle on the softer surface. At each galloping speed, ground
stiffness reductions of 20% and higher were achieved. An
example of how the model responded to a ground impedance
reduction of nearly 30% is shown in Figure 7. On the softer
running surface, the model typically galloped with a higher
stride frequency compared to the more rigid surface.

3. Results

3.1. Limb Retraction

As shown in Figures 2 through 5, each limb of a galloping
horse retracts just before striking the ground. The model

Fig. 7. The vertical height of the center of mass measured
from the undeflected ground surface is plotted against time
in seconds for the horse model galloping at 6.8 m/sec. At
3 seconds (denoted by arrow), when the galloping model
was off the ground, the stiffness of the running surface was
reduced by almost 30% from 964 kN/meter to 698 kN/meter.
At 8 seconds, or 10 galloping cycles after the ground stiffness
had been reduced, the model found a new stable limit cycle.

exhibited this same behavior in numerical simulation. The
first hindlimb began to retract at a fixed time interval after
retraction began in the first forelimb during a previous contact
period. Similarly, retraction of the first forelimb occurred at a
fixed time interval after retraction began in the first hindlimb
within the same contact period. The same fixed time intervals
were used for each galloping speed. The total cycle time,
approximately equal to the sum of the retraction times, there-
fore changed little with galloping speed. The time separating
retractions of the first hindlimb and the first forelimb was 37
milliseconds, and the time separating retractions of the first
forelimb and the first hindlimb was 0.41 seconds.6 These re-
traction times not only resulted in stable galloping but also
led to good experimental predictions of total cycle time, the
time between consecutive foot strikes of the same foot, and
animal stride frequency, the inverse of total cycle time (see
Section 3.2).

6. In this study, galloping velocity was not increased to the point where the
model exhibited an aerial phase between hind and forelimb contact periods.
Perhaps a future study might show that the retraction times used at slow to
moderate galloping speeds fail to work at the fastest speeds, when an extended
aerial phase emerges.
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3.2. Overall Mechanics and Energetics
of the Model

Model stride frequency was compared to experimental data
taken by Heglund and Taylor (1988) on a small galloping
horse (140 Kg). The results, plotted in Figure 8(a), agree
with the animal data. Similar to a running horse, the model
increased speed in galloping by increasing stride length, the
distance traveled throughout a running cycle, not by increas-
ing stride frequency.

Model stride length, normalized by leg length, was com-
pared to experimental observations on horses, large cats, and
dogs presented by Alexander (1977) and Cavagna et al. (1988)
(Fig. 8b). The model’s relative stride length increased with
forward Froude number, a dimensionless velocity, in a manner
similar to the galloping quadrupeds.

In addition, the model’s cost of transport, the amount of
metabolic energy used in moving a unit of body weight a unit
distance, was compared to the cost of transport of a small
running horse (140 Kg) measured in the study of Hoyt and
Taylor (1981). Model predictions, shown in Figure 9, show
good agreement with experimental data.

The Kram and Taylor (1990) rule was used to estimate
the cost of transport using only the model’s forward running
speed, the average limb contact time in steady-state running,
and a cost coefficient,Co. The cost coefficient values,Co,
used to estimate the energy consumption shown in Figure 9,
are listed in Table 1. Cost coefficient values were adjusted
until the simulation data agreed with the experimental data.
In Table 2, experimental measurements of the cost coefficient,
Co, made by Kram and Taylor (1990) are listed for three gal-
loping speeds. The cost coefficient values in Table 1 agree
well with the experimental values listed in Table 2. A com-
plete description of how the cost of transport was computed
is presented in the appendix.

4. Discussion

4.1. Previously Developed Mathematical Models
of Galloping

Two distinct control strategies have been employed to sta-
bilize galloping models in numerical simulation. In a first
strategy, the postural orientation of a quadrupedal model was

Table 1. Cost Coefficient Values Used to Estimate the
Model’s Cost of Transport (Fig. 9), Listed at Three Gal-
loping Speeds (G)

Forward Speed Cost Coefficient
(meters/second) (Joules/Newton)

5.2 (G) 0.174
6.8 (G) 0.183
7.4 (G) 0.186

Fig. 8. (a) Stride frequency, the inverse of total cycle time,
is plotted against forward speed. Open triangles are animal
data from a galloping horse (140 Kg), and closed symbols
are simulation results. Animal data adapted with permission
from Heglund and Taylor (1988). (b) The distance the horse
model moved in one complete running cycle, or the stride
length,s, is normalized by the leg length,lo, and plotted on
logarithmic coordinates against the forward Froude number,
U = u/

√
glo, whereu is the forward velocity andg is the

gravitational constant. The open symbols are animal data, and
the closed symbols are simulation data. Animals represented
include horses, large cats, and dogs. Animal data adapted
with permission from Alexander (1977) and McMahon and
Cheng (1990).
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Fig. 9. The cost of transport, or the metabolic energy con-
sumed by a running horse in moving a unit of body weight a
unit distance, is plotted versus speed for the galloping horse
model (135 Kg, filled symbols) and a galloping horse (140
Kg, open symbols). The experimental horse data were taken
with permission from Hoyt and Taylor (1981). The Kram
and Taylor (1990) rule, defined in the appendix, was used to
estimate the cost of transport for the model.

Table 2. Cost Coefficient Values Listed at Three Galloping
Speeds (G)

Forward Speed Cost Coefficient
(meters/second) (Joules/Newton)

5.0 (G) 0.174± 0.015
6.0 (G) 0.179± 0.007
7.0 (G) 0.184± 0.008

NOTE: Standard errors of the mean are included for four
small horses (mean body mass = 141 Kg). Adapted from
Kram and Taylor (1990); reprinted with permission.

measured relative to vertical and used to modulate actuator
forces to actively stabilize galloping (Nanua 1992). In a sec-
ond strategy, a quadrupedal model relied on large curved feet
to ensure its balance, rather than an active control system
(Ringrose 1997). In this strategy, the galloping model was
stable simply because of the shape of its foot, requiring no
sensory information from the environment.

Although quadrupedal models have successfully galloped
in numerical simulation, their structures and movements have
not specifically resembled galloping animals. The manner
in which galloping animals stabilize their movement is still
unknown today. In the present study, we used a numerically
simulated horse model to test different control hypotheses.
For acceptance of a control strategy, we required an adequate
ability of the model to predict experimental observations on
galloping horses not only for mechanical variables but also
for the rate of energy metabolism as well.

4.2. Does the Galloping Model Have to Measure Its Postural
Orientation Relative to Vertical to Remain Stable?

Our findings support the hypothesis that a horse-like robot
does not require sensory knowledge of its postural orienta-
tion relative to vertical to remain balanced during steady-state
galloping. The model remains stable without ever measuring
or explicitly controlling absolute pitch or limb position. Sta-
bilization does not result from an inherently stable machine
structure, such as large hemispherical feet or the like. Rather,
the galloping model uses both feed-forward and feedback con-
trol strategies in a distributed control scheme to stabilize pitch,
speed, and height.

4.3. Why Does Controlling Relative Foot Speed Enhance
Model Stability?

By sustaining the tangential velocity component of each
stance foot measured relative to a proximal limb joint (see
eq. (2)), the controller sustains forward speed and at the same
time stabilizes body pitch. When the forelimb target velocity
is smaller than the forward velocity of the galloping model and
the hindlimb target velocity is greater, the shoulder generally
applies a braking torque during stance and the hip a thrust-
ing torque. This thrusting and braking behavior increases
model stability by decreasing angular fluctuations in body
pitch throughout stance, keeping the trunk more parallel to
the ground.

In moderate to fast galloping, both hindlimbs strike the
ground before the forelimbs touch down. Without a hip torque
during early stance, an error in body pitch would occur by mid-
stance, causing the shoulder to fall below the hip. This would
occur for the same reason that a four-legged table would not
remain upright if two of its legs were missing from one side.
Without a hip torque, gravitational and inertial forces would
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rotate the trunk about the hindlimbs, causing the model to nose
into the ground. When a thrusting torque is applied to the hip
such as in Figure 6(d), the shoulder does not fall below the
hip, and the trunk remains level. The thrusting torque applies
an equal and opposite torque to the trunk tending to lift the
shoulder higher than the hip, countering the tendency of the
model to nose into the ground.

The braking torque applied at the shoulder during late
stance, as shown in Figure 6, has an opposite affect on body
pitch. Braking tends to lift the hip above the shoulder, counter-
ing the gravitational and inertial forces pulling the hip down-
ward. If both the hip and shoulder exerted thrusting torques,
the hip would fall lower and lower with respect to the shoulder,
destabilizing model pitch.

Braking and thrusting are also stabilizing in cantering. If
a pitch error causes the hindlimb to strike the ground before
the forelimb, the thrusting hip counters the gravitational and
inertial forces tending to nose the model into the ground. On
the contrary, if the forelimb strikes first, the braking shoulder
counters the gravitational and inertial forces tending to push
the hip lower than the shoulder. By adjusting the hind- and
forelimb target velocities, both forward velocity and body
pitch can be effectively stabilized, with the hips acting as the
engine of galloping and the shoulders as the brake.

4.4. What Are the Advantages of Early
Limb Retraction?

When a horse gallops at high speed, each limb begins to retract
toward the ground before actually striking the ground (Figs. 2-
5). The obvious advantage of early retraction is that each foot
moves at zero relative velocity with respect to the ground at
the moment of first ground contact. Consequently, each limb
smoothly strikes the ground, thereby lowing energy losses
associated with each foot collision. Another advantage of
early retraction is that cycle time is controlled. When the
model bounces too high in the air, the first hindlimb retracts
toward the ground at a fixed time after retraction began in the
first forelimb during a previous contact period. Without early
retraction, the cycle time would have been increased simply
because the model would have spent too much time in the air
prior to striking the ground.

4.5. What Might Vestibular Sensing Be Used for in
Galloping Horses?

The results of this study suggest that a horse may not have
to measure body pitch using its vestibular system to remain
balanced in pitch for steady-state running. If vestibular sens-
ing is not critical to pitch stabilization in a steadily galloping
horse, then what might its function be? One possibility is
that the vestibular system may measure an animal’s forward
acceleration during a gallop, not its spatial orientation. How

quickly an animal changes speed from a slow canter to a fast
gallop may be an important control parameter for stabilization
of velocity transients. Another possibility is that vestibular
inputs are necessary for irregular terrain or for the stabiliza-
tion of body roll and yaw. It is certainly the case that the
vestibulo-ocular reflex is necessary to direct the eyes of an
animal in any particular direction, and the vestibular appa-
ratus, somatic righting reflexes, and the visual system itself
must be employed when an animal gets up from lying on its
side or rights itself in a free fall (Eyzaguirre and Fidone 1975).

4.6. How Plausible Is the Horse Model as a Biological
Representation?

For acceptance of a control strategy, we required an adequate
ability of the model to predict experimental observations on
galloping horses of similar body size. In Figures 8 and 9, the
simulation results show good agreement with experimental
measurements on horses describing stride frequency, relative
stride length, and the metabolic cost of transport.

Another test of model plausibility is whether the control
inputs are consistent with what is known about biological
sensing. The model’s feedback control strategies require sen-
sory information reporting limb ground contact, the angle and
velocity of each limb with respect to the body, the length and
rate of change of leg length, and back and neck joint angles.
A horse could determine which of its limbs are on the ground
by using either cutaneous receptors or muscle force receptors
in tendons. A horse could also determine a joint’s position
and velocity using sensory receptors at or around the joint
or in the muscle fiber that actuates the joint (Eyzaguirre and
Fidone 1975).

A final plausibility test is whether model stability is sen-
sitive to changes in ground impedance. The control scheme
presented here could not be viewed as a realistic biological
representation if the model were not able to overcome sig-
nificant decreases in ground impedance. To test model ro-
bustness, the horizontal and vertical ground spring stiffnesses
were changed in simulation experiments at three different gal-
loping speeds (5.2 m/sec, 6.8 m/sec, and 7.4 m/sec). Without
a single adjustment made to the controller, the model galloped
robustly from a rigid running surface (964 kN/m) to a more
compliant surface (698 kN/m) at each galloping speed (see
Fig. 7).

4.7. Applications to Legged Machine Structure and Control

The information from this study may lead to an improved
quadrupedal galloping machine. The most obvious advantage
of the proposed method is that gyroscopic sensing may not be
necessary for machine stabilization. In the proposed method,
the absolute orientation of the model in space is not a required
control input.
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Another advantage is that a machine’s legs, back, and
neck would only have to behave as simple springs during
stance. The horse model used back, neck, and leg spring
stiffnesses that did not change appreciably with changes in
forward speed. Consequently, in a galloping machine, nei-
ther force nor impedance control may be necessary at these
joints.7

During the aerial phase, the back, neck, and legs should not
behave as passive springs, simply because these joints have
to be positioned in preparation for landing. But throughout
stance, the joints should behave as simple springs so that the
machine may rebound from the ground with each step. This
joint behavior could be achieved efficiently by using a spring
in series with both a low-power clutch and a small motor.
During the aerial phase, the clutch would be disengaged, en-
abling the small motor to position the joint in preparation for
landing. The clutch would then be engaged during stance to
stiffen the joint with the motor exerting little to no force. With
this system, most of the motor mass would be in the machine’s
body to actuate the shoulders and hips during stance, resulting
in lightweight limbs that could easily be accelerated during
locomotion.

Using the control principles outlined in this paper, it may
be possible to construct a horse-like galloping robot that is
dynamically stable in pitch, even without gyroscopic sensing
to constantly monitor body attitude. Once constructed, such a
robot would be closer in character to a simple hand-launched
glider than to a helicopter in forward flight, which must be
“flown” every minute to avoid a crash.

Appendix: Relevant Background Information

The Energetics of Galloping

Cross-bridge models of skeletal muscle are not used in this
paper to predict directly the metabolic energy demands of
quadrupedal galloping. Instead, an empirical rule is used to
estimate energetic behavior using only mechanical predic-
tions from the model. The empirical rule, presented by Kram
and Taylor (1990), is based on the observation that the recip-
rocal of limb contact time in running increases linearly with
forward speed along with metabolic rate. A useful generaliza-
tion can be found by dividing the weight-specific metabolic
power by the reciprocal of an animal’s limb contact time to get
a cost coefficient that is largely independent of animal speed
and size, or

Pmet

W
= Co

tc
. (A1)

7. Admittedly, if ground stiffness changed dramatically and the machine could
not select its own footholds, a modest level of impedance control would be
required in the stance limbs, simplifying the machine greatly.

Here,Pmet is the metabolic power required to run,W is body
weight,tc is the average time a leg remains in contact with the
ground during a running cycle, andCo is the proportionality
constant or cost coefficient. For quadrupedal mammals, the
cost coefficient has an approximate value of 0.2 J N−1 across
both speed and size.

The metabolic cost of transport, the energy to transport
unit weight a unit distance, can be found from eq. (A1) by
simply dividing by the animal’s forward running speedu, or

Cost of Transport= Pmet

Wu
= Co

tcu
. (A2)

In running simulations, the cost of transport is estimated by
predicting how much time, on average, each limb of the gal-
loping model remains on the ground at a particular forward
speedu. Hence, for this work, the Kram and Taylor (1990)
rule serves as a bridge between the mechanics and energetics
of locomotion.
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