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Abstract
The robustness of bipedal walking robots can be

enhanced by the use of adaptive control techniques. In
this paper, we extend a previous control approach,
“Virtual Model Control” (VMC) [6] to create “Adaptive
Virtual Model Control” (AVMC). The adaptation
compensates for external disturbances and unmodelled
dynamics, enhancing robustness in the control of height,
pitch, and forward speed. The state machine used to
modulate the virtual model components and to select the
appropriate virtual to physical transformations (as in
traditional VMC) is also used to inform the adaptation
about the robot's changing configuration.

The design procedure for AVMC is described in this
paper and simulation results are presented for a planer
walking biped.

Keywords:  adaptive   control,   virtual  model control,
legged  locomotion.

1 Introduction
Because a biped’s dynamics are multivariable, high-

order, nonlinear, and time-variant, it is difficult to design
a walking controller using traditional techniques.
However, many novel approaches have been explored.

Golliday and Hemarni [2] used state feedback to de-
couple the high-order system of a biped into independent
low-order subsystems. Miyazaki and Arimoto [10] used a
singular perturbation technique and showed that bipedal
locomotion can be divided into two modes: a fast mode
and a slow mode, thus simplifying the controller’s design.
Furusho and Masubuchi [11] derived a reduced order
model as a dominant subsystem that approximates the
original high-order model very well by applying local
feedback control to each joint of a biped robot. Miura and
Shimoyama [7] linearized biped dynamics and designed
stable controllers by means of linear feedback. Kajita and
Tani [12] developed their 6-degree of freedom bipedal
robot “Meltran II” using a linear Inverted Pendulum
Mode successfully. A research group at the Honda Motor
Company designed their control system for a humanoid
bipedal robot using zero moment force control and
playback of recorded trajectories [5]. In addition, other
researchers have made good progresses in the control of

biped robots by means of learning techniques such as
fuzzy logic and neural network control [13,15].

In our previous “Virtual Model Control” approach to
bipedal walking [4,6], we utilized physical intuition in the
development and implementation of control strategies.
With this approach we achieved moderate performance
and robustness for blind planer walking over rough
terrain.

In this paper, we add adaptation to the Virtual Model
Control approach to enhance robustness. Simulation
results are presented in section 4.

2 Virtual Model Control
Dynamically stable legged robots are difficult to

control for several reasons.  The are non-linear, passively
unstable, under-actuated, and exhibit varying dynamics
depending on which feet contact the ground.  Because of
these difficulties, textbook control solutions typically are
not applicable.  Instead, physical intuition is often used as
a tool to develop a controller.

Virtual Model Control [4,6,16,17] is one such
technique. Virtual components are attached between parts
of the physical structure of the robot and between the
robot and the environment.  Torque is applied to the joints
of the robot so as to make the robot behave as if the
virtual components are present.  A finite state machine
monitors the robot’s configuration and discretely
modulates the virtual to physical transformation and the
parameters of the virtual components.

Figure 1 shows a diagram of one set of virtual
components that can be used to control a planar bipedal
walking robot.  These components were used in the
control of our 4-DOF walking robot Spring Turkey [6].
Virtual spring-damper components are attached to the
robot in three axes (Z, X,θ ), and provide height, pitch,
and forward velocity control.  The “dogtrack bunny”
indicates that a spring-damper mechanism in the X
direction is pulled along at the desired velocity.  Due to
the constraint of an un-actuated ankle in this robot, the X
axis spring-damper mechanism is attached only when the
robot is in its double support phase of walking.
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  Figure 1: One implementation of Virtual Model Control
applied to a seven-link bipedal walking robot.

There are three steps to implementing a Virtual Model
Controller:

1) Design the controller by choosing virtual
components and their attachment points.

2) Design the finite state machine or other method
of virtual component modulation.

3) Determine the virtual to physical transformation.

Figure 2 shows a state machine that was used in the
control of our bipedal robots “Spring Turkey” and, later,
“Spring Flamingo” (which had actuated ankles).  The
virtual to physical transformation is based on the robot’s
Jacobian and some additional constraints [6].

3 Adaptive Control in Virtual Dynamics
Space
Virtual Model Control without adaptive mechanisms

can control a walking robot successfully over both level
and sloped terrain [16,17]. However, it is beneficial to
consider the higher order unmodelled dynamics of the
robot and dynamically adapt to changing dynamics or
disturbances.  Chew [16] used robust adaptive control
with mass adaptation in his simulation study of rough
terrain walking. We extend Chew’s work here into a more
complete virtual dynamics space framework.

As  a natural extension of VMC, Adaptive VMC can
also be considered as a learning mechanism. A good
learning mechanism needs a proper performance index
function, a learning algorithm, and a suitable system
dynamics framework. In the following sub-sections, the
above three components are discussed. A virtual
dynamics model based adaptive control framework is
presented.
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Figure 2: Diagram of the global state machine for
 a bipedal walking robot.

3.1 Performance index of the control in a legged
robot

Robustness for a walking robot requires that its
stability be maintained when encountering unexpected
external disturbances and complex environments. There
are two types of stability for a legged robot. First, stability
of a legged robot requires the stability of internal
dynamics in each individual mode under external
disturbances. Second, achieving stability also requires
persistent smooth movements in complex environments.
In this paper, the adaptive VMC will take care of the first
requirement for stability. The second requirement can be
achieved through an adaptive gait control approach. We
will not focus on that in this paper.

In general, the performance measurements of walking
robots are much different from the typical notions of
performance for manipulators, such as command
following and disturbance rejection. The overall
performance of a walking robot is usually defined in
terms of biological similarity and efficiency of leg
locomotion, smoothness of movement and robustness to
the environments. Specifying a proper overall
performance index for a legged robot is thus a difficult
task. In this preliminary work, our approach is to utilize a
simpler tracking index and try to achieve dynamic
stability in a Lyapunov sense.
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Figure 3: Diagram of virtual dynamics model based
control design.

3.2 Virtual dynamics model based control design
approach

Automatic tuning of a controller requires a suitable
framework or a dynamic model that can reflect the
physical interaction between the environment and the
system itself. In this paper, our adaptive control design is
based on the framework of a virtual dynamics model.
Figure 3 shows the diagram of a virtual dynamics model
based control design. In this diagram, there is a virtual
dynamics space and a physical dynamics space. By
utilizing an observation module, the necessary
information is collected from the physical space and
formulated into the properly selected virtual axes of the
virtual space, such that the virtual dynamics of the biped
robot can be reconstructed. The virtual control is designed
based on the reconstructed virtual dynamics model. The
outputs of the controller are the generalized virtual forces
that are transformed into the physical torque commands
for the actuators by means of the dynamics
transformations. The transformations are different in
different states, for instance, the single support states and
the double support state.

In general, the control law of a dynamic system can be
formulated as,

cd uxxKu ∆++−= )~~( λ&                                         (1)

where the control is composed of a linear feedback
control part plus a control action correction term cu∆ ,

0, >dKλ  , and x~  is system tracking error. Here we call

cu∆  a learning control term which will be updated on

line in an adaptive control system. How to determine cu∆
is the focus of this paper. Our approach is to utilize the
information observed from physical space and compute

cu∆  based on the reconstructed virtual model in virtual

space.
The formulation of the virtual dynamics is based on

the concept of linearization  of dynamics, which says that
any nonlinear dynamics equation can be linearized into a
locally linear dynamics equation around an operating
point (state) and globally the dynamics can be considered
as time-varying linear dynamics. Therefore, in our design,
we use the form of a time-varying linear virtual dynamics
model and put the error model (unmodelled dynamics)
into an error bound for a robustness mechanism to
tolerate. For simplicity, in this design, a second order
virtual system model is utilized. It is expected that the
controller designed in virtual space should be able to take
care of the unmodelled dynamics. We choose the adaptive
sliding control approach with dead zone to handle this
problem.

In our design, the dynamics of the biped legged robot
is formulated in z, x, and θ axis of the virtual space. The
general form of the virtual model in (z, x, and θ axis) can
be written as,

xxx udtxxfaxaxaxa =+++++ ,...),,(4321 &&&&               (2)

zzz udtzzfbzbzbzb =+++++ ,...),,(4321 &&&&                    (3)

θθθ θθθθθ udtfcccc =+++++ ,...),,(4321
&&&&              (4)

where x, z, θ are the state variables, xu , zu , θu  are the

control commands and ,...),,( txxf x & , ,...),,( tzzf z & ,

,...),,( tf θθθ
&  are the unmodelled dynamics terms which

are unknown functions of the state variable ,x  ,x&  z, z& ,

θ , θ&  time t, and the variables, xd , zd , θd are the

disturbance terms. The linear crossover terms are not
included here in the above equations, but in a general
case, they should be present.

3.3 Adaptive control design
Using the above virtual dynamics formulation and the

framework of virtual dynamics model based control, the
adaptive controller can be designed in the virtual space by
means of adaptive sliding control theory [9]. Since the
linear dynamics of z, x, and θ axis are in a similar
formulation, the general dynamics (5) of only one axis is
described in the following section.

udtxxfaxaxaxa =+++++ ,...),,(4321 &&&&                     (5)

Define the switching variable s(t) as,
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where  dxxx −=~ , dx  is the desired trajectory, λ is a

strictly positive gain (except λ=0 for x axis dynamics).

 Note that rx&   can be computed from the state ),( xx &

and the desired trajectory dx ,

)()( ddr xxxtsxx −−=−= λ&&&                                        (7)

According to adaptive control theory [9], we can derive
the following control law,

sKaYu D−= ˆ                                                              (8)

Choose the adaptation law as,
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where 
DK

D=Φ ,  Dtxxfd ≤+ ,...),,( & , D is the upper

bound of the disturbance and the unmodelled dynamics.
â  is estimation of the parameter vector a .

=Γ diag },,,{ 4321 γγγγ , ( 0>iγ ) is the adaptation gain

matrix.
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By the above control law and adaptation law, it can be
guaranteed that the positive semidefinite Lyapunov
function candidate
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where aaa −= ˆ~   has a negative semidefinite time
derivative. Therefore

2
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From the above result, we can prove uniform global
stability of the system ( 0→∆S , ∞→t ) by Barbalat’s

Lemma [9].
The above adaptive control design can be used to

design the adaptive control for x, z, θ axis. Thus the
corresponding controls are the force commands
( θfff zx ,, ) generated in the virtual space. Then

following the steps in section 2, the actuator torques can
be obtained by forward dynamics transformations.
Referring to the general form of control law (1), in this
case aYuc ˆ=∆ .

The result in equation (15) presents good behavior of
asymptotically global stability outside of the sliding
boundary layer assuming the given continuous dynamics
as in (5). In fact, in our application, the equivalent virtual
dynamics in the X-axis is not a continuous function in
terms of the alternate states during bipedal walking. So
the performance in X-axis dynamics is not guaranteed.
This is addressed in the conclusions.

It is worthwhile to mention that the above adaptive
control scheme has a nice property, namely robustness,
which is achieved by means of boundary layer tolerance.
The model error and disturbance are all formulated into a
pre-estimated error bound. Then the boundary layer
thickness is determined based on it. This implies that by
adding better identification mechanisms to the above
dynamics framework (Figure 3), the performance could
be improved further. For example, we can incorporate
some nonlinear identification schemes (such as neural
networks) to the adaptive control system. Combining a
nonlinear identification model such as radial base
function neural networks and the above linear time
varying model in (5), we can derive the following virtual
dynamics equations:
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In (16), we have a mixed model with linear and nonlinear
part where ε is the model error, )(•ig is the nonlinear

base functions and d is the disturbance term. By using this
formulation and proper identification techniques, such as
neural networks, the model error can be reduced. In this
case (not discussed here), the error bound is smaller and
the tracking performance further improved.

4. Simulation and Results
A planar bipedal walking robot was created in

simulation.  The simulated biped has a mass of
approximately 8.0 kg and stands 0.80 m tall. Both virtual
model control [6] and Adaptive Virtual Model Control
were applied to the biped. During the simulations,
external force disturbances were exerted on the biped in



different directions to test the control robustness. We
observed that the adaptive virtual model controller
improved the system’s robustness. When an impulse
external force was exerted on the robot, the robot was
able to maintain stable walking and recovered its
continuous motion. Also, the simulations showed that the
biped with AVMC could better maintain the desired
height of center of mass (CM), the desired body pitch as
well as smooth motion in the x-axis. The simulated biped
with AVMC can walk indefinitely.

Figure 4b shows the simulation results with adaptive
VMC, the dynamics of force signals θfff zx ,, , and

forward velocity in x, and actual position in z, θ  (i.e.
height, pitch) in virtual space. Figure 4a shows the planar
bipedal robot controlled by the VMC scheme. In Figure
4a & 4b, the responses are robot height (Z), pitch (Theta,
θ ), forward velocity (X-dot), as well as virtual force
commands generated by a controller, such as zf  (f-z), xf

(f-x) and θf (f-t). Comparing the results under VMC and

AVMC, we can see that AVMC can improve the dynamic
tracking performance of height and pitch, but it can’t help
much in forward velocity control because the controller
can only function in the double support state. In single
support states, because of the dynamics constraints, the
controller of X-axis is disconnected by the dynamics
transformations. This implies that the virtual dynamics in
X-axis is not a continuous function. Therefore the
adaptive control can not really achieve a desired
performance in the forward speed control (of X-axis),
This could be further improved by a gait control scheme.
Figure 5 shows the parameter identification of the virtual
linear dynamics model by the adaptation mechanism.

In the test of robustness with external disturbances, we
did an external force impact test in our simulation. Figure
6 shows the simulation responses of a bipedal walking
robot experiencing an external force impact (10 Newtons)
in the z-direction. Figure 7 shows the stick plot diagram
of this walking profile with a force impact. From the
above results, it has been shown that improved robustness
can be achieved by means of the adaptive VMC scheme.
The robustness of the biped with changing terrain will be
tested in our future research.

Figure 4a: Simulation results of a bipedal robot with VMC.
X-dot, Theta, and Z are responses of the forward
velocity,   pitch  angle  and  robot   body   height
respectively.  f-x,  f-t,  f-z  are  the virtual  force
commands generated by the VMC.

Figure 4b: Simulation   results   of   a  bipedal   robot   with
 Adaptive   VMC.    X-dot,  Theta,   and   Z   are
 responses  of  the  forward velocity,  pitch  angle
 and  robot   body   height  respectively.   f-x,  f-t,
 f-z  are   the  virtual  force  commands  generated
 by  the Adaptive VMC.



Figure 5: Parameter identification of the linear virtual
dynamics model in z-axis.

Figure 6: Simulation results  of  a  bipedal  walking  robot
with external impact (10 Newtons) in z direction.
Z and  f-z  are  the robot  height  and  the virtual
force  command in z axis respectively.

Figure 7: Stickplot of a bipedal walking robot experiencing
external force impact (10 Newtons) in z direction.

5 Conclusions
Adaptive Virtual Model Control has been proposed to

enhance the robustness of the control system for a bipedal
walking robot. When adaptation is added to the virtual
components, the controller responds to time varying
parameters and external disturbances.  It also adapts to
unmodelled dynamics, resulting in more accurate height
and pitch trajectory tracking.

Under-actuation is a major aspect of dynamic legged
robots which makes their control a challenge.  Due to the
limitations of the foot-ground contact, it is impossible to
stabilize a biped under all circumstances.  In this study,
we assumed the feet and ankles were unactuated and
hence chose to control forward velocity only during
double support.  Thus the stability results of section 3
hold only for pitch and height during single support, and
for speed assuming the swing leg and support transition
controllers successfully carry the robot from one double
support phase to another. Forward speed control could be
accomplished by a proper gait control scheme.

 It may be possible to extend Virtual Model Control by
adding learning components as well as adaptive
components. We are currently pursuing this idea.
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