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Abstract

The human ankle provides a significant amount of net positive work during the stance
period of walking, especially at moderate to fast walking speeds. On the contrary,
conventional ankle-foot prostheses are completely passive during stance, and conse-
quently, cannot provide net positive work. Clinical studies indicate that transtibial
amputees using conventional prostheses exhibit higher gait metabolic rates as com-
pared to intact individuals. Researchers believe the main cause for the observed
increase in metabolism is due to the inability of conventional prostheses to provide
net positive work at terminal stance in walking.

This objective of this thesis is to evaluate the hypothesis that a powered ankle-
foot prosthesis, capable of providing active mechanical power at terminal stance, can
improve amputee metabolic walking economy compared to a conventional passive-
elastic prosthesis. To test the hypothesis, a powered prosthesis is designed and buil
that comprises a unidirectional spring, configured in parallel with a force-controllable
actuator with series elasticity. The prosthesis is controlled to mimick human an-
kle walking behavior, in particular, the power generation characteristics observed in
normal human walking.

The rate of oxygen consumption is measured as a determinant of metabolic rate
on three unilateral transtibial amputees walking at self-selected speeds. The initial
clinical evaluation shows that the powered prosthesis improves amputee metabolic
economy from 7% to 20% compared to the conventional passive-elastic prostheses
(Flex-Foot Ceterus and Freedom Innovations Sierra), even though the powered system
is twofold heavier than the conventional devices. These results support the proposed
hypothesis and also suggest a promising direction for further advancement of ankle-
foot prosthesis.
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Chapter 1

Introduction

Today's commercially available below-knee prostheses are completely passive during
stance, and consequently, their mechanical properties remain fixed with walking speed
and terrain. These prostheses typically comprise elastic bumper springs or carbon
composite leaf springs that store and release energy during the stance period, e.g. the
Flex-Foot or the Seattle-Lite [1][2].

Lower extremity amputees using these conventional passive prostheses experience
many problems during locomotion. For example, transtibial amputees expend 20-
30% more metabolic power to walk at the same speed than able-bodied individuals,
and therefore, they prefer a slower walking speed to travel the same distance. Thus,
their self-selected walking speed is normally 30-40% lower than the mean speed of
intact individuals [3][4]. Also, many clinical studies report that amputees exhibit
an asymmetrical gait pattern [6][7] [8]. For example, unilateral below-knee amputees
generally have higher than normal hip extension, knee flexion, and ankle dorsiflexion
on the unaffected side. On the affected side, such individuals have less than normal
hip and knee flexion during stance. Additionally, there is a significant ankle power
difference between the affected and unaffected sides during ankle powered plantar
flexion in walking.

There are many differences between the mechanical behavior of conventional ankle-
foot prostheses during the walking cycle and that of the human ankle-foot complex.
Most notably, the human ankle performs more positive mechanical work than nega-
tive, especially at moderate to fast walking speeds [10]-[15]. Researchers hypothesize
that the primary source of energy loss in walking is to "pay" for the redirection of the
center of mass velocity during step-to-step transitions [17][18] [19]. Researchers have
shown that supplying energy through the ankle joint to redirect the center of mass
is more economical than to exert power through the hip joint alone [17][19]. These
biomechanical results may explain why transtibial amputees require more metabolic
energy to walk than intact individuals. Using a conventional passive prosthesis, a
leg amputee can only supply energy through the hip joint to power center of mass
dynamics, producing a pathological gait pattern [6] [7] [8].

In this thesis, it is hypothesized that the inability of conventional passive pros-
theses to provide net positive work over the stance period is the main cause for the
aforementioned clinical problems. The goal of this thesis is to evaluate the hypothesis



through development of a physical prototype of a powered ankle-foot prosthesis' to
demonstrate its benefits to a transtibial amputee ambulation.

1.1 State-of-the-Art

Although the idea of a powered ankle-foot prosthesis has been discussed since the late
1990s, only one attempt has been made to develop such a prosthesis to improve the
locomotion of amputees. Klute [20] attempted to use an artificial pneumatic muscle,
called McKibben actuator to develop a powered ankle-foot prosthesis. Although
the mechanism was built, no further publications have demonstrated its capacity to
improve amputee gait compared to conventional passive-elastic prostheses.

More recent work has focused on the development of quasi-passive ankle-foot
prostheses [21][22][23]. Collins and Kuo [21] advanced a foot system that stores
elastic energy during early stance, and then delays the release of that energy until
late stance, in an attempt to reduce impact losses of the adjacent leg. Since the
device did not include an actuator to actively plantar flex the ankle, no net work was
performed throughout stance. Other researchers [22][23] have built prostheses that
use active damping or clutch mechanisms to allow ankle angle adjustment under the
force of gravity or the amputee's own weight.

In the commercial sector, the most advanced ankle-foot prosthesis, the Ossur
Proprio FootTM [1], has an electric motor to adjust foot position during the swing
phase to achieve foot clearance during level-ground walking. Although active during
the swing phase, the Proprio ankle joint is locked during stance, and therefore becomes
equivalent to a passive spring foot. Consequently, the mechanism cannot provide net
positive power to the amputee.

1.2 Engineering Challenges

According to [6] [9] [26], two main engineering challenges hinder the development of a
powered ankle-foot prosthesis.

* Mechanical design
With current actuator technology, it is challenging to build an ankle-foot pros-
thesis that matches the size and weight of the human ankle, but still provides a
sufficiently large instantaneous power and torque output to propel an amputee.
For example, a 75 kg person has an ankle-foot weight of approximately 2.5
kg, and the peak power and torque output at the ankle during walking at 1.7
m/s can be up to 350 W and 150 Nm, respectively [10][12][9]. Current ankle-
foot mechanisms for humanoid robots are not appropriate for this application,
as they are either too heavy or not powerful enough to meet the human-like
specifications required for a prosthesis [27][28].

1In this thesis, a powered ankle-foot prosthesis is defined as an ankle-foot prosthesis that can
provide sufficient net positive work during the stance period of walking to propel an amputee.



Control system design
A powered prosthesis must be position and impedance controllable. Often
robotic ankle controllers follow pre-planned kinematic trajectories during walk-
ing [27] [28], whereas the human ankle is believed to operate in impedance control
mode during stance and position control mode during swing [11][12]. Further-
more, for the ease of use, only local sensing for the prosthesis is preferable,
which adds extra constraints on the control system design. Finally, there is
no clear control target or "gold standard" for the prosthesis to be controlled,
against which to gauge the effectiveness. It is unclear what kind of prosthetic
control strategy is effective for the improvement of amputee ambulation.

1.3 Research Objective

The objective of this thesis is to evaluate the following hypothesis: a powered ankle-
foot prosthesis improves transtibial ambulation, in particular the walking economy. In
this thesis, improving walking economy means decreasing the metabolic cost of trans-
port (COT), which is defined as the metabolic energy spent per unit body weight per
unit distance [24].

To meet this objective, this thesis comprises three research components:

* the advancement of a powered ankle-foot prosthesis to allow different prosthetic
control systems to be evaluated on transtibial amputees;

* the development of a control system for the powered prosthesis that mimics
normal human stance period dynamics;

* a clinical evaluation of the powered prosthesis on three unilateral transtibial
amputees walking on level-ground surfaces.

1.4 Thesis Outline

In Chapter 2, I review the human ankle biomechanics in walking.
In Chapter 3, I propose a stance phase control scheme of the prosthesis that

mimicks the quasi-static stiffness behavior and power generation characteristics of
the human ankle during steady state walking, called target stance phase behavior. I
hypothesize that using this target stance phase behavior in an ankle-foot prosthesis
may reduce a transtibial amputee walking economy.

In Chapter 4, I specify the design specifications for the prosthesis based on the hu-
man ankle walking biomechanics. I present a novel motorized prosthesis, called MIT
Powered Ankle-Foot Prosthesis, that exploits both series and parallel elasticity with
an actuator to fulfill the demanding human-like ankle specifications. I first describe
the basic configuration and a minimal model for the powered ankle-foot prosthesis.



I propose several design analyses to guide the selection of system components. Fi-
nally, I describe the physical embodiment of the proposed prosthesis and present the
experimental results for the system characterization.

In Chapter 5, I present a control system architecture that allows the prosthesis to
provide the target stance phase behavior. It includes the design of low-level controllers
and a finite-state controller that utilizes low-level controllers to mimic the normal
human ankle behavior during the stance period of walking.

In Chapter 6, I present details of the clinical evaluation on three unilateral transtib-
ial amputees, which includes experimental protocols and the clinical results. The
clinical study consists of three sessions: Basic Clinical Gait Study , Metabolic Cost
Study, and Kinematics and Kinetics Study. I discuss the results at the end of this
chapter.

In Chapter 7, I outline the contributions of this thesis and propose future avenues
of investigation.



Chapter 2

Background

Understanding normal walking biomechanics provides the basis for the design and
control of the powered prosthesis. In this chapter, I first review biomechanics of
normal human ankle-foot for level-ground walking. I then present an overview of
conventional ankle-foot prostheses. Finally, I dicuss typical locomotion problems
experienced by the transtibial amputees using conventional prostheses.

2.1 Normal Human Ankle-Foot Walking Biome-
chanics

Walking is a highly coordinated behavior accomplished by intricate interaction of
the musculo-skeletal system. Researchers have spent many efforts to understand
the corresponding principle for human walking [29][24][10][25] [31] [30]. Preliminary
introduction to human walking can be obtained through Inman [24] and Perry [25].
Winter [10][32][33] also provides a detailed analysis of kinematic, kinetic and muscle
activation patterns of human gait.

This chapter focuses on providing the basic concepts of human walking, in partic-
ular, the function of human ankle in the sagittal plane during level-ground walking.
Along the lines of the research in [11]-[14][25], the function of the human ankle is
characterized in terms of simple mechanical elements, rather than using a complex
biomechanical model. Such simple functional models motivate and simplify the de-
sign and control of the powered prosthesis. They also provide a means by which the
performance of any artificial ankle could be measured against that of a biological
ankle [11].

2.1.1 Normal Gait

A level-ground walking gait cycle is typically defined as beginning with the heel strike
of one foot and ending at the next heel strike of the same foot [24] [25]. The main
subdivisions of the gait cycle are the stance phase (about 60% of a gait cycle) and
the swing phase (about 40% of a cycle)(Fig. 2-1). The swing phase (SW) represents



Stance , Swing
60% 40%

Max.Heel-strike Foot-flat Dorsiflexion Toe-off Heel-strike
- ----- -----

Controlled Controlled Powered
Plantarflexion Dorsiflexion Plantarflexion Swing Phase

Function: Function: Function: Function:
Linear Nonlinear Torque Source Position
Spring Spring + Spring control

Figure 2-1: Normal human ankle biomechanics for level-ground walking.

the portion of the gait cycle when the foot is off the ground. The stance phase be-
gins at heel-strike when the heel touches the floor and ends at toe-off when the same
foot rises from the ground surface. From [11] [12], the stance phase of walking can be
divided into three sub-phases: Controlled Plantar Flexion (CP), Controlled Dorsiflex-
ion (CD), and Powered Plantar Flexion (PP). These phases of gait are described in
Fig. 2-1. In addition, Fig. 2-2 shows the typical ankle torque-angle characteristics for
a 75kg person walking at a self-selected speed (1.25m/sec). The detailed descriptions
for each sub-phase are provided below.

Controlled Plantar Flexion (CP)

CP begins at heel-strike and ends at foot-flat. Simply speaking, CP describes
the process by which the heel and forefoot initially make contact with the ground.
In [11][12][25], researchers showed that ankle joint behavior during CP is consistent
with a linear spring response with joint torque proportional to joint position. As can
be seen in Fig. 2-2, segment (1)-(2) illustrates the linear spring behavior of the ankle.

Controlled Dorsiflexion (CD)

CD begins at foot-flat and continues until the ankle reaches a state of maximum
dorsiflexion. Ankle torque versus position during the CD period can often be de-
scribed as a nonlinear spring where stiffness increases with increasing ankle position.
The main function of the human ankle during CD is to store the elastic energy neces-
sary to propel the body upwards and forwards during the PP phase [11]-[15]. Segment
(2)-(3) in Fig. 2-2 reveals the nonlinear spring behavior of the human ankle joint dur-


















































































































































































